NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Towards a FPGA-controlled deep phase modulation interferometer
Published
Author(s)
Marcelo Teran, Victor Martin, Lluis Gesa, Ignacio Mateos, Ferran Gibert, Nico Karnesis, Juan Ramos Castro, Thomas Schwarze, Oliver Gerberding, Gerhard Heinzel, Felipe Guzman, Miquel Nofrarias
Abstract
Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.
Teran, M.
, Martin, V.
, Gesa, L.
, Mateos, I.
, Gibert, F.
, Karnesis, N.
, Ramos Castro, J.
, Schwarze, T.
, Gerberding, O.
, Heinzel, G.
, Guzman, F.
and Nofrarias, M.
(2015),
Towards a FPGA-controlled deep phase modulation interferometer, Journal of Physics: Conference Series
(Accessed October 20, 2025)