Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Towards Absolute Viability Measurements for Bacteria

Published

Author(s)

Joy Dunkers, Hariharan K. Iyer, Brynna H. Jones, Charles Camp, Stephan J. Stranick, Nancy Lin

Abstract

Quantifying viable, vegetative bacteria is a critical measurand in healthcare diagnostics, food safety, and antimicrobial development. Viability determination has traditionally relied on such techniques as plate counting, colorimetric or fluorescent metabolic assays and membrane integrity assays. There are well documented caveats with all of the aforementioned approaches, particularly when differentiating quiescent bacteria from dead. Therefore, we aim to develop a quantitative viability method that can distinguish individual quiescent cells from dead, provide results within hours, and is referenceable to a standard unit of measurement for comparability. In this work, we demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for a model oral bacteria, Streptococcus mutans. To quantify the results, we developed a random forest machine learning model to classify bacteria into 3 populations: stationary phase (quiescent) (SP), heat killed (HK), and dead via chemical fixation (FP) in saline and phosphate buffered saline. To strengthen our classification, we compared the results to intensity classification using three other models: fluorescence lifetime variables (t1, t2, p1), phasor variables (G, S) or all five variables (t1, t2, p1, G, S). The intensity models had the most objects misclassified and the majority of them were from the SP and FP conditions. The 5 variable model had the most success at classification, with a significant number of SP bacteria predicted to be HK in the saline buffer. Further analysis of the predicted HK bacteria in the SP condition supports the idea that a substantial portion of the population died in culture during prolonged storage prior to imaging. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species
Citation
Journal of Biophotonics
Volume
N/A

Keywords

viability, fluorescence lifetime microscopy, membrane voltage, bacteria

Citation

Dunkers, J. , Iyer, H. , Jones, B. , Camp, C. , Stranick, S. and Lin, N. (2021), Towards Absolute Viability Measurements for Bacteria, Journal of Biophotonics, [online], https://doi.org/10.1002/jbio.202100175, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930948 (Accessed November 30, 2021)
Created September 12, 2021, Updated October 28, 2021