Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Time-resolved radiation beam profiles in water obtained by ultrasonic tomography

Published

Author(s)

Eugene Malyarenko, Joseph Heyman, Heather H. Chen-Mayer, Ronald Tosh

Abstract

This paper presents a practical ultrasonic system for near real-time imaging of spatial temperature distributions in water caused by absorption of radiation. Initial testing with radiation from a highly attenuated infrared lamp demonstrates that the system is able to map sub-milliKelvin temperature changes, thus making it suitable for characterizing dose profiles of therapy-level ionizing radiation beams. The system uses a fan-beam tomographic reconstruction algorithm to invert time-of-flight data derived from ultrasonic pulses produced and detected by a circular array of transducers immersed in water. Temperature dependence of the speed of sound in water permits the conversion of these measured two-dimensional velocity distributions into temperature distributions that indicate the absorbed radiation dose. The laboratory prototype, based on a 128-element transducer array, is used to acquire temperature maps of a 230 mm x 230 mm area every 4 seconds with sub-milliKelvin resolution in temperature and about 5 mm resolution in space. Earlier measurements with a single-channel version of this prototype suggest refinements in signal-conditioning electronics and signal-processing algorithms that would allow the present instrument to resolve temperature changes as low as a few microKelvin. Possible applications include real-time intensity profiling of radiation beams and three-dimensional characterization of the absorbed dose.
Citation
Medical Physics
Volume
47

Keywords

absorbed dose, standard reference dosimetry, ultrasonic tomography, water calorimeters

Citation

Malyarenko, E. , Heyman, J. , Chen-Mayer, H. and Tosh, R. (2010), Time-resolved radiation beam profiles in water obtained by ultrasonic tomography, Medical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=902937 (Accessed March 28, 2024)
Created December 30, 2010, Updated October 12, 2021