NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Time Dependent Driving Forces and the Kinetics of Tricalcium Silicate Hydration
Published
Author(s)
Jeffrey W. Bullard, George W. Scherer, Jeffrey J. Thomas
Abstract
Simulations of tricalcium silicate (C3S) hydration using a kinetic cellular automaton program, HydratiCA, indicate that the net rate depends both on C3S dissolution and on hydration product growth. Neither process can be considered the sole rate-controlling step because the solution remains significantly undersaturated with respect to C3S yet significantly supersaturated with respect to calcium silicate hydrate (C-S-H). The reaction rate peak is attributed to increasing coverage of C3S by C-S-H, which reduces both the dissolution rate and the supersaturation of C-S-H. This supersaturation dependence is included in a generalized boundary nucleation and growth model to describe the kinetics without requiring significant impingement of products on separate cement grains. The latter point explains the observation that paste hydration rates are insensitive to water/cement ratio. The simulations indicate that the product layer on C3S remains permeable; no transition to diffusion control is indicated, even long after the rate peak.
cement hydration kinetics, computer modeling and simulation, boundary nucleation and growth
Citation
Bullard, J.
, Scherer, G.
and Thomas, J.
(2015),
Time Dependent Driving Forces and the Kinetics of Tricalcium Silicate Hydration, Cement and Concrete Research, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913609
(Accessed October 10, 2025)