Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Thermophysical Property Measurements on Niobium and Titanium by a Microsecond-Resolution Transient Technique Using High-Speed Laser Polarimetry and Radiation Thermometry

Published

Author(s)

K Boboridis

Abstract

A microsecond-resolution technique was used to measure the heat of fusion, specific heat capacity and electrical resistivity of niobium and titanium in the temperature range of 1600 K to 3200 K and 1500 to 2200 K, respectively. The method is based on rapid resistive self-heating of a wire-shaped specimen by a current pulse from a capacitor-discharge system. Melting of the specimen occurs in approximately 50 s. Measured quantities are the current through the specimen, the voltage drop across the specimen, the radiance from the specimen, and its normal spectral emittance, as functions of time. True temperature of the specimen is computed from the values of normal spectral emittance and radiance temperature of the specimen at each instance. The latter quantities are measured by means of high-speed laser polarimetry and radiation thermometry, respectively.
Citation
International Journal of Thermophysics
Volume
23
Issue
No. 1

Keywords

electrical resistivity, emittance, heat capacity, heat of fusion, liquid metals, melting, niobium, refractory metals, titanium

Citation

Boboridis, K. (2002), Thermophysical Property Measurements on Niobium and Titanium by a Microsecond-Resolution Transient Technique Using High-Speed Laser Polarimetry and Radiation Thermometry, International Journal of Thermophysics (Accessed February 25, 2024)
Created January 1, 2002, Updated February 17, 2017