NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thermochromic Phase Transitions in VO2-based Thin Films for Energy-Saving Applications
Published
Author(s)
Sara C. Barron, Justin M. Gorham, Martin L. Green
Abstract
The thermochromic transition in vanadium dioxide has potential application as a smart energy-saving window coating, but the temperature of the transition must be depressed from 68°C to Earth ambient temperatures by the incorporation of transition metal impurities. In this paper, we describe a high throughput combinatorial experiment to characterize the V1-xMxO2 phase space, in which M is a non-V metal, for thermochromic transitions. Thin film combinatorial libraries are prepared by pulsed laser deposition on hot silicon substrates, and the M impurities are found to substitute into the VO2 crystalline lattice on the V-site. For M = Ta, Nb, and W, the thermochromic transition temperature is depressed with increasing M concentration. Co-doping with multiple M atoms is also easily accomplished by combinatorial synthesis and can have unexpected effects on the thermochromic transition.
Barron, S.
, Gorham, J.
and Green, M.
(2014),
Thermochromic Phase Transitions in VO2-based Thin Films for Energy-Saving Applications, ECS Transactions , Orlando, FL, [online], https://doi.org/10.1149/06102.0387ecst
(Accessed October 3, 2025)