An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thermal Stresses and Microcracking in Calcite and Dolomite Marbles via Finite Element Modelling
Published
Author(s)
T Weiss, S Siegesmund, Lin-Sien H. Lum
Abstract
Microstructure-based finite element simulations were used to study the thermomechanical behavior of calcite and dolomite marbles. For a given mineral microstructure, thermal stresses and elastic strain energy varied with the single-crystal elastic constants and coefficients of thermal expansion. Moreover, they were a strong function of crystallographic texture. Given the same morphological microstructure and crystallographic texture, calcite had larger thermal stresses and elastic strain energy than dolomite. Hence, calcite has an earlier onset of microcracking upon either heating or cooling, and has a greater extent of microcracking at a given temperature differential. However, the variation in thermal stresses and microcracking propensity for either mineral with different assignments of random texture was greater than the difference between the two minerals. The measured bulk thermal expansion anisotropy suggested that the random representations had some degree of texture. The actual texture of the real microstructure, as determined by electron-backscattered diffraction, showed the largest degree of bulk thermal expansion anisotropy, the smallest strain energy, and hence the smallest amount of thermal microcracking. Microstructure-based finite element simulations are considered an excellent tool for elucidating myriad influences of microstructure and physical properties on the thermal degradation of marbles and other minerals.
Weiss, T.
, Siegesmund, S.
and Lum, L.
(2003),
Thermal Stresses and Microcracking in Calcite and Dolomite Marbles via Finite Element Modelling, Geological Society Special Publication
(Accessed October 5, 2024)