NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Theory of Four-Wave Mixing of Matter Waves from a Bose-Einstein Condensate
Published
Author(s)
M Trippenbach, Y B. Band, Paul S. Julienne
Abstract
A recent experiment [Deng et al., Nature 398, 218 (1999)] demonstrated the four-wave mixing of matter wavepackets created from a Bose-Einstein condensate. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction from a stationary Bose-Einstein condensate. The high-momentum components and the initial low momentum condensate interact to form a new momentum component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional quantum mechanical description, based on the slowly-varying-envelop approximation, for four-wave mixing in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation and apply this description to describe the experimental observations and to make predictions. We examine the role of phase-modulation, momentum and energy conservation (i.e., phase-matching), and particle number conservation in four-wave mixing of matter waves, and develop simple models for understanding our numerical results.
Citation
Physical Review A (Atomic, Molecular and Optical Physics)
Trippenbach, M.
, Band, Y.
and Julienne, P.
(2000),
Theory of Four-Wave Mixing of Matter Waves from a Bose-Einstein Condensate, Physical Review A (Atomic, Molecular and Optical Physics)
(Accessed October 7, 2025)