Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Theoretical Bounds on Data Requirements for the Ray-Based Classification

Published

Author(s)

Brian Weber, Sandesh Kalantre, Thomas McJunkin, Jacob Taylor, Justyna Zwolak

Abstract

The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases. For the case of identifying convex shapes of different geometries, a new classification framework has recently been proposed in which the intersections of a set of one-dimensional representations, called rays, with the boundaries of the shape are used to identify the specific geometry. This ray-based classification (RBC) has been empirically verified using a synthetic dataset of two- and three-dimensional shapes (Zwolak et al. in Proceedings of Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada [December 11, 2020], arXiv:2010.00500, 2020) and, more recently, has also been validated experimentally (Zwolak et al., PRX Quantum 2:020335, 2021). Here, we establish a bound on the number of rays necessary for shape classification, defined by key angular metrics, for arbitrary convex shapes. For two dimensions, we derive a lower bound on the number of rays in terms of the shape's length, diameter, and exterior angles. For convex polytopes in R^N, we generalize this result to a similar bound given as a function of the dihedral angle and the geometrical parameters of polygonal faces. This result enables a different approach for estimating high-dimensional shapes using substantially fewer data elements than volumetric or surface-based approaches.
Citation
SN Computer Science
Volume
3
Issue
1

Keywords

machine learning, quantum dots, high-dimensional data, classification

Citation

Weber, B. , Kalantre, S. , McJunkin, T. , Taylor, J. and Zwolak, J. (2021), Theoretical Bounds on Data Requirements for the Ray-Based Classification, SN Computer Science, [online], https://doi.org/10.1007/s42979-021-00921-0, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931504 (Accessed October 24, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created November 10, 2021, Updated December 5, 2023
Was this page helpful?