NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Temperature dependence of the diffusive conductivity of bilayer graphene
Published
Author(s)
Shaffique Adam, Mark D. Stiles
Abstract
Assuming diffusive carrier transport and employing an effective medium theory, we calculate the temperature dependence of bilayer graphene conductivity due to Fermi-surface broadening as a function of carrier density. We find that the temperature dependence of the conductivity depends strongly on the amount of disorder. In the regime relevant to most experiments, the conductivity is a function of T/T, where T is the characteristic temperature set by disorder. We demonstrate that experimental data taken from various groups collapse onto a theoretically predicted scaling function.
Adam, S.
and Stiles, M.
(2010),
Temperature dependence of the diffusive conductivity of bilayer graphene, Physical Review B, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=904658
(Accessed October 8, 2025)