Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Temperature and light intensity effects on the photodegradation of high-density polyethylene

Published

Author(s)

Andrew W. Fairbrother, Hsiang C. Hsueh, Jae Hyun Kim, Deborah S. Jacobs, Lakesha N. Perry, David G. Goodwin, Christopher C. White, Stephanie S. Watson, Li Piin Sung

Abstract

The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems, however, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m-2, 61 W m-2, 38 W m-2, 15 W m-2, 8 W m-2, and 0 W m-2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR). The rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity, and the rate of change tended to increase under more aggressive exposure conditions. The photothermal activation energies and UV dose-damage relationships for these properties was determined, and indicate a similar underlying mechanism between loss of elongation-at-break and crystallization. A comparison to HDPE under outdoor exposure (southern Florida) shows a similar magnitude of material change up to the point of embrittlement, in spite of the much more varied outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE, and can be utilized to develop degradation mitigation strategies for these and related thermoplastic materials.
Citation
Polymer Degradation and Stability
Volume
165
Issue
July

Keywords

HDPE, polymer degradation, accelerated weathering, kinetics, reciprocity, SPHERE

Citation

Fairbrother, A. , Hsueh, H. , , J. , Jacobs, D. , Perry, L. , Goodwin, D. , White, C. , Watson, S. and Sung, L. (2019), Temperature and light intensity effects on the photodegradation of high-density polyethylene, Polymer Degradation and Stability, [online], https://doi.org/10.1016/j.polymdegradstab.2019.05. (Accessed October 3, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created May 11, 2019, Updated June 17, 2019