Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Targeting hMSC Response via Surface Carbonyl Groups, Contact Angle, and Protein Interactions



Max J. Lerman, Shinichiro Muramoto, Navein Arumugasaamy, Michael Van Order, Josephine Lembong, Anushka Gerald, John G. Gillen, John P. Fisher


Traditional 2D culture systems made of polystyrene (PS) require the addition of surface chemistry beyond the nominal phenyl groups present to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that carbonyl groups correlated well with successful adhesion of ECM proteins and sustaining ECM production of deposited human mesenchymal stem cells (hMSCs), if the surface is moderately hydrophilic. Translation of these findings to custom fabricated, 3D PS scaffolds reveals carbonyl groups continued to enhance spreading and growth in 3D culture. Cumulatively, these data present a method for 3D printing PS and the design considerations required for understanding cell-material interactions.
Colloids and Surfaces B-Biointerfaces


polystyrene, surface chemical modification, plasma treatment, protein adhesion, custom fabrication, 3D printing
Created March 1, 2019, Updated March 6, 2019