NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Targeting hMSC Response via Surface Carbonyl Groups, Contact Angle, and Protein Interactions
Published
Author(s)
Max J. Lerman, Shinichiro Muramoto, Navein Arumugasaamy, Michael Van Order, Josephine Lembong, Anushka Gerald, John G. Gillen, John P. Fisher
Abstract
Traditional 2D culture systems made of polystyrene (PS) require the addition of surface chemistry beyond the nominal phenyl groups present to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that carbonyl groups correlated well with successful adhesion of ECM proteins and sustaining ECM production of deposited human mesenchymal stem cells (hMSCs), if the surface is moderately hydrophilic. Translation of these findings to custom fabricated, 3D PS scaffolds reveals carbonyl groups continued to enhance spreading and growth in 3D culture. Cumulatively, these data present a method for 3D printing PS and the design considerations required for understanding cell-material interactions.
Lerman, M.
, Muramoto, S.
, Arumugasaamy, N.
, Van, M.
, Lembong, J.
, Gerald, A.
, Gillen, J.
and Fisher, J.
(2019),
Targeting hMSC Response via Surface Carbonyl Groups, Contact Angle, and Protein Interactions, Colloids and Surfaces B-Biointerfaces, [online], https://doi.org/10.1002/jbm.b.34347
(Accessed October 14, 2025)