Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Systematic DFT+U and Quantum Monte Carlo Benchmark of Magnetic Two-Dimensional (2D) CrX3 (X = I, Br, Cl, F)

Published

Author(s)

Daniel Wines, Kamal Choudhary, Francesca Tavazza

Abstract

The search for two-dimensional (2D) magnetic materials has attracted a great deal of attention because of the experimental synthesis of 2D CrI3, which has a measured Curie temperature of 45 K. Often times, these monolayers have a higher degree of electron correlation and require more sophisticated methods beyond density functional theory (DFT). Diffusion Monte Carlo (DMC) is a correlated electronic structure method that has been demonstrated to be successful for calculating the electronic and magnetic properties of a wide variety of 2D and bulk systems, since it has a weaker dependence on the Hubbard parameter (U) and density functional. In this study, we designed a workflow that combines DFT+U and DMC in order to treat 2D correlated magnetic systems. We chose monolayer CrX3 (X = I, Br, Cl, F), with a stronger focus on CrI3 and CrBr3, as a case study due to the fact that they have been experimentally realized and have a finite critical temperature. With this DFT+U and DMC workflow and the analytical method of Torelli and Olsen, we estimated a maximum value of 43.56 K for the Tc of CrI3 and 20.78 K for the Tc of CrBr3, in addition to analyzing the spin densities and magnetic properties with DMC and DFT+U. We expect that running this workflow for a well-known material class will aid in the future discovery and characterization of lesser known and more complex correlated 2D magnetic materials.
Citation
Journal of Physical Chemistry C

Citation

Wines, D. , Choudhary, K. and Tavazza, F. (2023), Systematic DFT+U and Quantum Monte Carlo Benchmark of Magnetic Two-Dimensional (2D) CrX3 (X = I, Br, Cl, F), Journal of Physical Chemistry C, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935551 (Accessed March 28, 2024)
Created January 9, 2023, Updated January 10, 2023