NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Tomographic studies of submicrometer samples in materials science using electron microscopy have been inhibited by diffraction effects. In the present work, we describe two practical methods for ameliorating these effects. In one, the sample is scanned over a square region. The mutual coherence function tends to zero faster than for hollow-cone illumination. In the other, Gaussian-weighted solid-cone illumination leads to an extremely localized mutual coherence function. The continuous solid-cone illumination can be implemented practically by repeated use of hollow-cone illumination with the cone angles chosen to make a Gaussian quadrature. Numerical and analytic results are presented.
Citation
Journal of the Optical Society of America A-Optics Image Science and Vision
tilt axis, tomography, transmission electron microscope
Citation
Levine, Z.
and Dunstan, R.
(2007),
Synthetic Incoherence for Electron Microscopy, Journal of the Optical Society of America A-Optics Image Science and Vision, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=840249
(Accessed October 25, 2025)