NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Studying Water and Solute Transport through Desalination Membranes via Neutron Radiography
Published
Author(s)
Devin L. Shaffer, Jacob M. LaManna, David L. Jacobson, Daniel S. Hussey, Menachem Elimelech, Edwin P. Chan
Abstract
Neutron radiography, a non-destructive imaging technique, is applied to study water and solute transport through desalination membranes. Specifically, we use neutron radiography to quantify lithium chloride draw solute concentrations across a thin-film composite membrane during forward osmosis permeation. This measurement provides direct visual confirmation of incomplete support layer wetting and reveals significant dilutive external concentration polarization of the draw solution outside of the membrane support layer. These transport-limiting phenomena have been hypothesized in previous work and are not accounted for in the standard thin-film model of forward osmosis permeation, resulting in inaccurate estimations of membrane transport properties. Our work demonstrates neutron radiography as a powerful measurement tool for studying membrane transport and emphasizes the need for direct experimental measurements to refine the forward osmosis transport model.
Shaffer, D.
, LaManna, J.
, Jacobson, D.
, Hussey, D.
, Elimelech, M.
and Chan, E.
(2017),
Studying Water and Solute Transport through Desalination Membranes via Neutron Radiography, Journal of Membrane Science, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=923184
(Accessed October 11, 2025)