Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Structure and Spectroscopy of Metallo-Lactamase Active Sites

Published

Author(s)

H S. Gilson, Morris Krauss

Abstract

This study clarifies the relationship between the active-site geometry of the bimetallic enzyme, zinc-Β-lactamase, and the electronic spectra of the cobalt substituted enzyme. Ab initio quantum methods were used to study both the structure and spectroscopy of the active sites of metallo-Β-lactamases. Theoretically optimized structures for the cobalt-substituted enzyme indicate that the coordination number of the two cobalt atoms remains the same as those of the zinc atoms in the crystal structure. Transition energies and intensities for the bimetallic active site were calculated by multiconfiguration self-consistent-field methodsand identified with a metal center. The visible spectrum line positions and intensities calculated using correlation energy corrections derived from second-order perturbation calculations on model systems were in good agreement with the experimental data, demonstrating that the first shell of ligands determines the spectra. Visible transition energies are predicted at both metal centers, but the calculated intensities suggest that contributions from the four-coordinate site (CA site) dominates the visible spectrum. Only one visible band from the five-coordinate site is predicted to overlap with the CA bands which are further to the red. The charge-transfer spectra from the cysteine to the open-shell cobalt cation results in at least 20 ligand-to-metal charge transfer (LMCT) lines. The lowest two energy transitions are assigned to the observed 330-nm absorption, which is usually attributed experimentally to the entire LMCT transition. However, the intensities of the higher energy LMCT transitions are predicted to be more intense.
Citation
Journal of the American Chemical Society
Volume
121

Keywords

absorption spectra, lactmase, metalloenzyme active site, prediction of structure, structure, zinc enzyme

Citation

Gilson, H. and Krauss, M. (1999), Structure and Spectroscopy of Metallo-Lactamase Active Sites, Journal of the American Chemical Society (Accessed March 29, 2024)
Created February 1, 1999, Updated February 17, 2017