Structural Investigations of Membrane-Associated Proteins by Neutron Reflectometry

Published: July 01, 2019


Rebecca Eells, David Paul Hoogerheide, Paul Kienzle, Mathias Loesche, Charles F. Majkrzak, Frank Heinrich


Neutron reflectometry is a powerful technique for probing the structure of lipid bilayer membranes and membrane-associated proteins. Measurements of the specular neutron reflectivity as a function of momentum transfer can be performed in aqueous environments, and inversion of the resulting reflectivity data yields structural profiles along the membrane normal with a spatial resolution approaching a fraction of a nanometer. With the inherent ability of the neutron to penetrate macroscopic distances through surrounding material, neutron reflectivity measurements provide unique structural information on biomimetic, fully hydrated model membranes and associated proteins under physiological conditions. A particular strength of neutron reflectometry is in the characterization of structurally and conformationally flexible peripheral membrane proteins. The unique ability of neutron scattering to differentiate hydrogen from selectively substituted deuterium enables the resolution of individual constituents of membrane-bound protein-protein complexes. Integrative modeling strategies that supplement the low-resolution reflectometry data with complimentary experimental and computational information yield high-resolution three-dimensional models of membrane-bound protein structures.
Citation: Characterization of Biological Membranes
Publisher Info: De Gruyter, Berlin, -1
Pub Type: Books

Download Paper


neutron reflectometry, membrane proteins
Created July 01, 2019, Updated October 02, 2019