NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Structural and Dynamic Heterogeneity in a Telechelic Polymer Solution
Published
Author(s)
D Bedrov, G D. Smith, Jack F. Douglas
Abstract
We utilize molecular dynamics simulations to investigate the implications of micelle formation on structural relaxation and polymer bead displacement dynamics in a model telechelic polymer solution. The transient structural heterogeneity associated with incipient micelle formation is found to lead to a caging of the telechelic chain end-groups within dynamic clusters on times shorter than the structural relaxation time governing the cluster (micelle) lifetime. This dynamical regime is followed by ordinary diffusion on spatial scales larger than the inter-micelle separation at long times. As wit associating polymers, glass-forming liquids and other complex heterogeneous fluids, the structural Ts relaxation time increases sharply upon a lowering temperature T, but the usual measures of dynamic heterogeneity in glass-forming liquids (non-Gaussian parameter a2(t), product of diffusion coefficient D and shear viscosity n, non-Arrhenius T-dependence of ts) all indicate a return to homogeneity at low T that is not normally observed in simuations of these other complex fluids. The greatest increase in dynamic heterogeneity is found on a length scale that lies intermediate to the micellar radius of gyration and intermicellar spacing. We suggest that the limited size of the clusters that form in our (low concentration) system limit the relaxation time growth and thus allows the fluid to remain in equilibrium at low T.
Bedrov, D.
, Smith, G.
and Douglas, J.
(2004),
Structural and Dynamic Heterogeneity in a Telechelic Polymer Solution, Polymer, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=852267
(Accessed October 18, 2025)