NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Static and dynamic magnetic properties of sputtered Fe-Ga thin films
Published
Author(s)
Daniel B. Gopman, Vimal Sampath, Hasnain Ahmad, Supriyo Bandyopadhyay, Jayasimha Atulasimha
Abstract
We present measurements of the static and dynamic properties of iron-gallium films, ranging from 20~nm to 80~nm and sputtered from an $\mathrm{Fe_{0.8}Ga_{0.2}}$ target. Using a broadband ferromagnetic resonance setup in a wide frequency range, perpendicular standing spin-wave resonances were observed with the external static magnetic field applied in--plane. The field corresponding to the strongest resonance peak at each frequency is used to determine the effective magnetization, the $g$--factor and the Gilbert damping. Furthermore, the dependence of spin- wave mode on field-position is observed for several frequencies. The analysis of broadband dynamic properties allows determination of the exchange stiffness $A = \left ( 18 \pm 4 \right ) \mathrm{pJ/m}$ and Gilbert damping $\alpha = 0.042 \pm 0.005$ for 40~nm and 80~nm thick films. These values are approximately consistent with values seen in epitaxially grown films, indicating the potential for industrial fabrication of magnetostrictive FeGa films for microwave applications.
Gopman, D.
, Sampath, V.
, Ahmad, H.
, Bandyopadhyay, S.
and Atulasimha, J.
(2017),
Static and dynamic magnetic properties of sputtered Fe-Ga thin films, IEEE Transactions on Magnetics, [online], https://doi.org/10.1109/TMAG.2017.2700404
(Accessed October 12, 2025)