An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hyuk-Jae Jang, Oleg A. Kirillov, Oana Jurchescu, Curt A. Richter
Abstract
We report on electron spin transport through electrochemically precipitated copper filaments formed in TaOX memristive devices consisting of Co(60nm)/TaOX(16nm)/Cu(5nm)/Py(60nm) with crossbar-type electrode geometry.The devices show memristive behavior having a typical OFF/ON resistance ratio of 105. Magneto-resistance measurements performed by sweeping an external magnetic field clearly indicate spin transport through an electrochemically formed copper nano-filament as long as 16 nm in the memristive ON-state at 77K. Spin transport vanishes in the OFF-state. These data are strong evidence that the fundamental switching mechanism in these metal-oxide devices is the formation of continuous metallic conduction paths. We expect our findings could advance current electronic technology combining spintronic and electronic functionalities.
Citation
Applied Physics Letters
Volume
100
Pub Type
Journals
Keywords
nanoelectronics, spintronics, memristive, memristor, random access memory, magneto-resistance