Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Spin transport in memristive devices

Published

Author(s)

Hyuk-Jae Jang, Oleg A. Kirillov, Oana Jurchescu, Curt A. Richter

Abstract

We report on electron spin transport through electrochemically precipitated copper filaments formed in TaOX memristive devices consisting of Co(60nm)/TaOX(16nm)/Cu(5nm)/Py(60nm) with crossbar-type electrode geometry.The devices show memristive behavior having a typical OFF/ON resistance ratio of 105. Magneto-resistance measurements performed by sweeping an external magnetic field clearly indicate spin transport through an electrochemically formed copper nano-filament as long as 16 nm in the memristive ON-state at 77K. Spin transport vanishes in the OFF-state. These data are strong evidence that the fundamental switching mechanism in these metal-oxide devices is the formation of continuous metallic conduction paths. We expect our findings could advance current electronic technology combining spintronic and electronic functionalities.
Citation
Applied Physics Letters
Volume
100

Keywords

nanoelectronics, spintronics, memristive, memristor, random access memory, magneto-resistance
Created January 26, 2012, Updated February 19, 2017