Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Spin Transfer Torques by Point-Contact Spin injection



Tingyong Chen, Yi Ji, S X. Huang, C L. Chien, Mark D. Stiles


Spin-transfer torques (STT) provide a new mechanism to alter the magnetic configuration in magnetic heterostructures, a feat previously only achieved by an external magnetic field. A current flowing perpendicular through a noncollinear magnetic spin structure can induce torques on the magnetization because an electron carries angular momentum, or spin, part of which can be transferred to the magnetic layer as a torque. A spin-polarized current of a very high current density (e.g., 106 A/cm2 to 108 A/cm2) is required to observe the effect of the spin transfer torques. Consequently, switching by spin-polarized currents is typically observed in structures with sub-micron cross sections made by nanolithography. Here we demonstrate spin transfer torque effects using point-contact spin injection involving no lithography. In a continuous Co/Cu/Co trilayer, we have observed hysteretic reversal of sub-100 nm magnetic elements by spin injection through a metal tip both at low temperature and at room temperature. A small magnetic domain underneath the tip in the top Co layer can be manipulated to align parallel or anti-parallel to the bottom Co layer. In an exchange-biased single ferromagnetic layer, we have observed a new form of STT effect which we interpret as the inverse effect of domain wall magnetoresistance. We further show that in granular solids, the STT effect that can induce a large spin disorder when combined with a large magnetic field. As a result, we have obtained a spectacular MR effect in excess of 400 %, the largest ever reported in any metallic systems.
SPIE proceedings series


Spin-transfer torque, point-contact spectroscopy, giant-magnetoresistance, exchange bias, granular films
Created August 24, 2009, Updated February 19, 2017