Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

A Spin-1 Representation for Dual-Funnel Energy Landscapes

Published

Author(s)

Justin E. Elenewski, Kirill Velizhanin, Michael P. Zwolak

Abstract

The interconversion between left- and right-handed helical folds of a polypeptide defines a dual-funneled free energy landscape. In this context, the funnel minima are connected through a continuum of unfolded conformations, evocative of the classical helix-coil transition. Physical intuition and recent conjectures suggest that this landscape can be mapped by assigning a left- or right-handed helical state to each residue. We explore this possibility using all-atom replica exchange molecular dynamics and an Ising--like model, demonstrating that the energy landscape architecture is at odds with a two-state picture. A three-state model - left, right, and unstructured - can account for most key intermediates during chiral interconversion. Competing folds and excited conformational states still impose limitations on the scope of this approach. However, the improvement is stark: Moving from a two-state to a three-state model decreases the fit error from 1.6 kT to 0.3 kT along the left-to-right interconversion pathway.
Citation
The Journal of Chemical Physics
Volume
149
Issue
3

Keywords

Helix-coil transition, coarse-grained models, foldamer, protein folding, energy landscape
Created July 20, 2018, Updated November 10, 2018