Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Solidification of Ni-Re Peritectic Alloys



William J. Boettinger, Dale E. Newbury, Nicholas W. Ritchie, Maureen E. Williams, Ursula R. Kattner, Eric Lass, Kil-Won Moon, Michael B. Katz


Differential thermal analysis (DTA) and microstructural and microprobe measurements of DTA and as-cast Ni-Re alloys with compositions between 0.20 and 0.44 mass fraction Re provide information to resolve differences in previously published Ni-Re phase diagrams. This investigation determines that the peritectic invariant, L + HCP  FCC, occurs at 1561.1 C ± 3.4 C (1) with compositions of liquid, FCC and HCP phases of 0.283 ± 0.036, 0.436 ± 0.026 and 0.828 ± 0.037 mass fraction Re, respectively. Analysis of the microsegregation in FCC alloys yields a partition coefficient for solidification, k=1.54 ± 0.09 (mass frac. / mass frac.). Small deviation from Scheil behavior due to dendrite tip kinetics is documented.
Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science


Differential thermal analysis, solidification, microstructure, microsegregation, electron microprobe measurements, Ni-Re phase diagram


Boettinger, W. , Newbury, D. , Ritchie, N. , Williams, M. , Kattner, U. , Lass, E. , Moon, K. and Katz, M. (2019), Solidification of Ni-Re Peritectic Alloys, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science (Accessed June 24, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created February 4, 2019, Updated March 4, 2020