NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In situ Angstrom-to-Micrometer Characterization of the Structural and Microstructural Changes in Kaolinite on Heating using Ultra-Small-Angle, Small-Angle, and Wide-Angle X-ray Scattering (USAXS/SAXS/WAXS)
Published
Author(s)
Fan Zhang, Andrew J. Allen, Greeshma Gadikota
Abstract
In this study, synchrotron-based in-operando multi-scale X-ray scattering analyses are used to connect the microstructural changes to the phase changes in kaolinite on heating from 30 °C to 1150 °C. Combined ultra-small-angle and small-angle X-ray scattering (USAXS and SAXS) data are modeled to determine the hierarchical morphology of kaolinite comprising nano-scale interlayer pores, meso-scale pores, and larger interparticle voids, while wide-angle X-ray scattering (WAXS) data reveal the simultaneous evolution of atomic structures in kaolinite. We found that the transformation of kaolinite to metakaolin corresponds to the disappearance of nano-scale porosity, and the onset of sintered phases such as mullite is consistent with the overall reduction in the porosity of kaolinite. The emergence of nano-scale particulate features in the reciprocal-vector, q, range of 0.04 Å-1 to 0.4 Å-1 on heating in excess of 900 °C corresponds to the onset of the sintered phases such as spinel and mullite. This study illustrates the application of multi-scale X-ray scattering measurements which encompass USAXS, SAXS and WAXS to connect the thermally induced phase changes with changes in pore structure and fine morphology evolution.
Zhang, F.
, Allen, A.
and Gadikota, G.
(2017),
In situ Angstrom-to-Micrometer Characterization of the Structural and Microstructural Changes in Kaolinite on Heating using Ultra-Small-Angle, Small-Angle, and Wide-Angle X-ray Scattering (USAXS/SAXS/WAXS), Industrial & Engineering Chemistry Research, [online], https://doi.org/10.1021/acs.iecr.7b02810
(Accessed October 1, 2025)