NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Single-Molecule Measurements Spatially Probe States Involved in Electron Transfer from CdSe/CdS Core/Shell Nanorods
Published
Author(s)
Garnett W. Bryant, Rachel Morin, Elena Shevchenko, Yuchen Sha, Matthew Pelton
Abstract
Semiconductor nanorods with charge-accepting molecules adsorbed on their surfaces serve as model systems for solar energy conversion. An electron photoexcited from the valence band of the nanorod to a high-energy state in the conduction band will relax and transfer to a state in the molecule, producing a long-lived charge-separated state that facilitates charge extraction and thereby enables photochemical reactions. Characterizing the dynamics of the charge-separation process and the electronic states involved is essential for a microscopic understanding of photocatalysis involving these materials, but this information is obscured in ensemble measurements due to the random placement of molecules on the nanorod surfaces. Here, we show that measurements on individual CdSe/CdS core/shell nanorods functionalized by single methyl viologen molecules provide information about the distribution of electron-transfer rates from confined states in the nanorods to states on the molecules. By comparing this transfer-rate distribution to the predictions of a tight-binding molecule, we find that charge transfer most likely involves hot electrons in an excited conduction-band state, rather than electrons that have fully thermalized to the conduction-band edge. The ability to extract hot electrons from semiconductor nanocrystals may help enable energy-efficient photocatalysis, and the single-particle charge-transfer method may serve as a widely applicable tool to probe the electron wavefunctions in nanocrystals.
Bryant, G.
, Morin, R.
, Shevchenko, E.
, Sha, Y.
and Pelton, M.
(2021),
Single-Molecule Measurements Spatially Probe States Involved in Electron Transfer from CdSe/CdS Core/Shell Nanorods, Journal of Physical Chemistry C, [online], https://doi.org/10.1021/acs.jpcc.1c06581, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933083
(Accessed October 10, 2025)