An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy.
Published
Author(s)
Joy P. Dunkers, Young J. Lee, Kaushik Chatterjee
Abstract
The focus on creating tissue engineered constructs of clinically relevant sizes requires new approaches for monitoring construct health during tissue development. A few key requirements are that the technology be in situ, non-invasive, and provide temporal and spatial information. In this work, we demonstrate that optical coherence microscopy (OCM) can be used to assess cell viability without the addition of exogenous probes in three-dimensional (3D) tissue scaffolds maintained under standard culture conditions. This is done by collecting time-lapse images of speckle generated by subcellular features. Image cross-correlation is used to calculate the number of features the final image has in common with the initial image. If the cells are live, the number of common features is low. The number of common features approaches 100% if the cells are dead. In control experiments, cell viability is verified by the addition of a two-photon fluorescence channel to the OCM. Green fluorescent protein transfected human bone marrow stromal cells cultured in a transparent poly(ethylene glycol) tetramethacrylate hydrogel scaffold is used as the control system. Then, the utility of this approach is demonstrated by determining L929 fibroblast cell viability in a more challenging matrix, collagen, an optical scatterer. These results demonstrate a new technique for in situ mapping single cell viability without any exogenous probes that is capable of providing continuous monitoring of scaffold health.
Dunkers, J.
, Lee, Y.
and Chatterjee, K.
(2011),
Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy., Biomaterials, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=909537
(Accessed December 8, 2024)