Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Short-Chained Oligo(ethylene oxide)-Functionalized Gold Nanoparticles: Realization of Significant Protein Resistance

Published

Author(s)

Kathryn Riley, Christopher Sims, Imani Wood, David J. Vanderah, Marlon L. Walker

Abstract

Protein corona formed on nanomaterial surfaces play an important role in the bioavailability and cellular uptake of nanomaterials. Modification of surfaces with oligoethylene glycols (OEG) are a common way to improve the resistivity of nanomaterials to protein adsorption. Short-chain ethylene oxide (EO) oligomers have been shown to improve the protein resistance of planar Au surfaces. We describe the application of these EO oligomers for improved protein resistance of 30 nm spherical gold nanoparticles (AuNPs). Functionalized AuNPs were characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. Capillary electrophoresis (CE) was used for separation and quantitation of AuNPs and AuNP-protein mixtures. Specifically, nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was employed for the determination of equilibrium and rate constants for binding between citrate-stabilized AuNPs and two model proteins, lysozyme and fibrinogen. Semi-quantitative CE analysis was carried out for mixtures of EO-functionalized AuNPs and proteins, and results demonstrated a 2.5-fold to 10-fold increase in protein binding resistance to lysozyme depending on the AuNP surface functionalization and a 15-fold increase in protein binding resistance to fibrinogen for both EO oligomers examined in this study.
Citation
Analytical and Bioanalytical Chemistry

Keywords

protein corona, gold nanoparticles, ethylene oxide, binding constant, capillary electrophoresis, NECEEM

Citation

Riley, K. , Sims, C. , Wood, I. , Vanderah, D. and Walker, M. (2017), Short-Chained Oligo(ethylene oxide)-Functionalized Gold Nanoparticles: Realization of Significant Protein Resistance, Analytical and Bioanalytical Chemistry, [online], https://doi.org/10.1007/s00216-017-0704-0 (Accessed April 18, 2024)
Created October 29, 2017, Updated October 12, 2021