Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1051 - 1075 of 1694

Efficient, low-noise, single-photon frequency conversion

June 9, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, M. M. Fejer, Xiao Tang
We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.

Non-equilibrium Fractional Quantum Hall state of light

June 3, 2013
Author(s)
Mohammad Hafezi, Jacob M. Taylor
We investigate the out-of-equilibrium dynamics in strongly interacting photonic systems. Specifically, we develop a method to investigate such system when they are externally driven with a coherent photonic field and evaluate relevant physical observables

Flat Frequency Response in the Electronic Measurement of the Boltzmann Constant

June 1, 2013
Author(s)
Jifeng Qu, Horst Rogalla, Yang Fu, Jianqiang Zhang, Alessio Pollarolo, Samuel Benz
A new quantum voltage calibrated Johnson noise thermometer (JNT) was developed at NIM to demonstrate the electrical approach that determines the Boltzmann constant k by comparing electrical and thermal noise power. A measurement with an integration period

Method for Ensuring Accurate AC Waveforms with Programmable Josephson Voltage Standards

June 1, 2013
Author(s)
Charles J. Burroughs, Alain Rufenacht, Samuel Benz, Paul Dresselhaus
The amplitudes of stepwise-approximated sine waves generated by programmable Josephson voltage standards (PJVS) are not intrinsically accurate because the transitions between the quantized voltages depend on numerous conditions. We have developed a method

Testing quantum expanders is co-QMA-complete

May 31, 2013
Author(s)
Yi-Kai Liu, Stephen P. Jordan, Pawel Wocjan, Adam Bookatz
A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum

Practical Strategies for QKD Key Production

May 28, 2013
Author(s)
Alan Mink, Anastase Nakassis
We present the quantum key distribution (QKD) secure key ratio expression in a form that exposes the parameters that affect the Reconciliation (error correction) stage. Reconciliation is the least well understood in practical terms and is typically

Frequency Correlated Bi-Photon Spectroscopy using a Tunable Up-Conversion Detector

May 21, 2013
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be

Light-Wave Mixing and Scattering with Quantum Gases

May 21, 2013
Author(s)
Lu Deng, Chengjie Zhu, Edward W. Hagley
We present a general theoretical framework on light-wave mixing and scattering in quantum gases. We show that all such processes that originate from elementary excitations are stimulated Raman or hyper-Raman in nature. In the forward direction, the third

Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

May 15, 2013
Author(s)
Bradley K. Alpert, Robert D. Horansky, Douglas A. Bennett, William B. Doriese, Joseph W. Fowler, Andrew Hoover, Michael W. Rabin, Joel N. Ullom
We introduce a filter construction method for pulse processing that differs in two respects from that in standard optimal filtering, in which the average pulse shape and noise power spectral density are combined to create a convolution filter for

Practical implementation of a test of event-based corpuscular model as an alternative to quantum mechanics

May 8, 2013
Author(s)
Sergey V. Polyakov, Alan L. Migdall, Ivo P. Degiovanni, Fabrizio Piacentini, Giorgio Brida, Marco Genovese, Paola Traina
We describe in detail the first experimental test that distinguishes between an event-based corpuscular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through
Displaying 1051 - 1075 of 1694
Was this page helpful?