An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Kamal Choudhary, Kevin Garrity, Andrew C. Reid, Brian DeCost, Adam Biacchi, Angela R. Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, Aaron Kusne, Andrea Centrone, Albert Davydov, Francesca Tavazza, Jie Jiang, Ruth Pachter, Gowoon Cheon, Evan Reed, Ankit Agrawal, Xiaofeng Qian, Vinit Sharma, Houlong Zhuang, Sergei Kalinin, Ghanshyam Pilania, Pinar Acar, Subhasish Mandal, David Vanderbilt, Karin Rabe
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques
Manufacturers need to be resilient to effectively mitigate substantial disruptions to manufacturing operations so they may remain competitive. Disruptions resulting from the COVID-19 global pandemic have caused manufacturers to experience new challenges
In the era of the Internet of Things, botnet threats are rising, which has prompted many studies on botnet detection and measurement. In contrast, this study aims to predict botnet attacks, such as massive spam emails and distributed denial-of-service
Keith Curtis, George Awad, Shahzad K. Rajput, Ian Soboroff
This is the introduction paper to the International Workshop on Deep Video Understanding. In recent years, a growing trend towards working on understanding videos (in particular movies) in a more deeper level started to motivate researchers working in
We present a Multi-Window Data Augmentation (MWA-SER) approach for speech emotion recognition. MWA-SER is a unimodal approach that focuses on two key concepts; designing the speech augmentation method and building the deep learning model to recognize the
Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a
The English word manufacturing firstly appeared in 1683 and it was derived from Latin manu factus, meaning making by hand. For more than thousands of years now, and four Industrial Revolutions, the physical, and mostly mechanical processes, associated with
Michael Majurski, Derek Juba, Timothy Blattner, Peter Bajcsy, Walid Keyrouz
Neural Networks are trained on data, learn relationships in that data, and then are deployed to the world to operate on new data. For example, a traffic sign classification AI can differentiate stop signs and speed limit signs. One potential problem is
Kamran Sayrafian, Masoud Roudneshin, Amir G. Aghdam
Recent advancements in micro-electronics have led to the development of miniature-sized wearable sensors that can be used for a variety of health monitoring applications. These sensors are typically powered by small batteries which could require frequent
When people try to understand nuanced language they typically process multiple input sensor modalities to complete this cognitive task. It turns out the human brain has even a specialized neuron formation, called sagittal stratum, to help us understand
Jun Wang, Andy Tam, Paul A. Reneke, Richard Peacock, Thomas Cleary, Eugene Yujun Fu, Grace Ngai, Hong Va Leong
This paper presents a study to examine the potential use of machine learning algorithms to build a model to forecast the likelihood of flashover occurrence for a single-floor multi-room compartment. Synthetic temperature data for heat detectors from
Jun Wang, Youwei Jia, Eugene Yujun Fu, Jiajia Li, Andy Tam
This paper aims to facilitate the use of machine learning to carry out supervised classification/regression tasks for time series data in fire research. Specifically, a feature engineering tool, FAST (Feature extrAction and Selection for Time-series), is
Mobile edge computing (MEC) is an emerging paradigm that integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. In this paper, we propose an online double deep Q
One of the most prevalent additive manufacturing processes, the powder bed fusion process, is driven by a moving heat source that melts metals to build a part. This moving heat source, and the subsequent formation and moving of a melt pool, plays an
Abstract Many machine learning algorithms examine large amounts of data to discover insights from hidden patterns. Testing these algorithms can be expensive and time-consuming. There is a need to speed up the testing process, especially in an agile
Hansong Xu, Wei Yu, Xing Liu, David W. Griffith, Nada T. Golmie
Industrial Internet of Things (IIoT) is predicted to drive the fourth industrial revolution through massive interconnection of industrial devices, such as sensors, controllers and actuators, integrating advances in smart machinery and data analytics driven
P Phillips, Carina Hahn, Peter Fontana, David A. Broniatowski, Mark A. Przybocki
We introduce four principles for explainable artificial intelligence (AI) that comprise the fundamental properties for explainable AI systems. They were developed to encompass the multidisciplinary nature of explainable AI, including the fields of computer
Melt pool size is a critical intermediate measure that reflects the outcome of a laser powder bed fusion process setting. Reliable melt pool predictions prior to builds can help users to evaluate potential part defects such as lack of fusion and over
Seyed Omid Sadjadi, Craig S. Greenberg, Elliot Singer, Douglas A. Reynolds, Lisa Mason
Following the success of the 2019 Conversational Telephone Speech (CTS) Speaker Recognition Challenge, which received 1347 submissions from 67 academic and industrial organizations, the US National Institute of Standards and Technology (NIST) will be
Ellen Voorhees, Nick Craswell, Bhaskar Mitra, Daniel Campos, Emine Yilmaz
The Deep Learning Track is a new track for TREC 2019, with the goal of studying ad hoc ranking in a large data regime. It is the first track with large human-labeled training sets, introducing two sets corresponding to two tasks, each with rigorous TREC
Brian L. DeCost, Jason R. Hattrick-Simpers, Zachary T. Trautt, Aaron G. Kusne, Martin L. Green, Eva Campo
Recent years have seen an ever-increasing trend in the use of machine learning (ML) and artificial intelligence (AI) methods by the materials science, condensed matter physics, and chemistry communities. This perspective article identifies key scientific
Ellen Voorhees, Ian Soboroff, Tasmeer Alam, Kirk Roberts, William Hersh, Dina Demner-Fushman, Steven Bedrick, Kyle Lo, Lucy L. Wang
TREC-COVID is an information retrieval (IR) shared task initiated to support clinicians and clinical research during the COVID-19 pandemic. IR for pandemics breaks many normal assumptions, which can be seen by examining nine important basic IR research
Himanshu Neema, Peter Volgyesi, Xenofon Koutsoukos, Thomas Roth, Cuong Nguyen
Modern electric grids that integrate smart grid technologies require different approaches to grid operations. There has been a shift towards increased reliance on distributed sensors to monitor bidirectional power flows and machine learning based load
Werickson Fortunato de Carvalho Rocha, Charles Prado, Niksa Blonder
Food analysis is a challenging analytical problem, often addressed using sophisticated laboratory methods that produce large data sets. Linear and non-linear multivariate methods can be used to process these types of datasets and to answer questions such
Adele P. Peskin, Boris Wilthan, Michael P. Majurski
Using a unique data collection, we are able to study the detection of dense geometric objects in image data where object density, clarity, and size vary. The data is a large set of black and white images of scatterplots, taken from journals reporting