An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Bradley Moore, John Matyjas, Raymond Tierney, Jesse Angle, Jeannine Abiva, Jeff Hanes, David Dobosh, John Avera
NIST Handbook 150-872 presents the technical requirements and guidance for the accreditation of laboratories under the National Voluntary Laboratory Accreditation Program (NVLAP) Federal Warfare System(s) (FWS) program. It is intended for information and
Physicians are increasingly using clinical sequencing tests to establish diagnoses of patients who might have genetic disorders, which means that accuracy of sequencing and interpretation are important elements in ensuring the benefits of genetic testing
Omid Sadjadi, Craig Greenberg, Elliot Singer, Lisa Mason, Douglas Reynolds
The 2021 Speaker Recognition Evaluation (SRE21) is the next in an ongoing series of speaker recognition evaluations conducted by the US National Institute of Standards and Technology (NIST) since 1996. The objectives of the evaluation series are (1) to
Ellen M. Voorhees, Ian Soboroff, Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos
The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data are likely deep neural networks. This paper
Haiying Guan, Andrew Delgado, Yooyoung Lee, Amy Yates, Daniel Zhou, Timothee N. Kheyrkhah, Jonathan G. Fiscus
NIST released a set of Media Forensic Challenge (MFC) datasets developed in DARPA MediFor (Media Forensics) project to the public in the past 5 years. More than 300 individuals, 150 organizations, from 26 countries and regions worldwide use our datasets
Future advances in deep learning and its impact on the development of artificial intelligence (AI) in all fields depends heavily on data size and computational power. Sacrificing massive computing resources in exchange for better precision rates of the
This work presents the design of an optimal disturbance rejecting tracking controller based on reinforcement learning. The problem involves finding the optimal control parameters that yield asymptotic output tracking in the presence of unmeasurable
Ruimin Chen, Yan Lu, Paul Witherell, Timothy Simpson, Soundar Kumara, Hui Yang
Additive manufacturing (AM) enables the creation of complex geometries that are difficult to realize using conventional manufacturing techniques. Advanced sensing is increasingly being used to improve AM processes, and installing different sensors onto AM
Aditya Joglekar, Omid Sadjadi, Meena Chandra-Shekar, Christopher Cieri, John Hansen
The Fearless Steps Challenge (FSC) initiative was designed to host a series of progressively complex tasks to promote advanced speech research across naturalistic "Big Data" corpora. The Center for Robuts Speech Systems at UT-Dallas in collaboration with
Harold Booth, James Glasbrenner, Howard Huang, Cory Miniter, Julian Sexton
The NCCoE has built an experimentation testbed to begin to address the broader challenge of evaluation for attacks and defenses. The testbed aims to facilitate security evaluations of ML algorithms under a diverse set of conditions. To that end, it has a
We present a new collection of processing techniques, collectively "factorized Kramers-Kroenig and error correction" (fKK-EC), for (a) Raman signal extraction, (b) denoising, and (c) phase- and scale- error correction in coherent anti-Stokes Raman
Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, Samuel Neyens, Evan MacQuarrie, Mark A. Eriksson, Jacob Taylor
Quantum dots (QDs) defined with electrostatic gates are a leading platform for a scalable quantum computing implementation. However, with increasing numbers of qubits, the complexity of the control parameter space also grows. Traditional measurement
We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be