NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A comprehensive evaluation of supervised machine learning models for the COVID-19 related domain name detection is presented. One representative conventional machine learning implementation and nineteen state-of-the-art deep learning implementations are
In an increasingly complex military operating environment, next generation wargaming platforms can reduce risk, decrease operating costs, and improve overall outcomes. Novel Artificial Intelligence (AI) enabled wargaming approaches, based on software
Wai Cheong Tam, Jun Wang, Richard D. Peacock, Paul A. Reneke, Eugene Yujun Fu, Thomas Cleary
This report provides additional technical details to an article entitled P-Flash – A Machine Learning-based Model for Flashover Prediction using Recovered Temperature Data. Research was conducted to examine the use of Support Vector Regression (SVR) to
Reva Schwartz, Apostol Vassilev, Kristen K. Greene, Lori Perine, Andrew Burt, Patrick Hall
As individuals and communities interact in and with an environment that is increasingly virtual they are often vulnerable to the commodification of their digital exhaust. Concepts and behavior that are ambiguous in nature are captured in this environment
Joshua Ziegler, Thomas McJunkin, Emily Joseph, Sandesh Kalantre, Benjamin Harpt, Donald Savage, Max Lagally, Mark Eriksson, Jacob Taylor, Justyna Zwolak
The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected failures when noisy or otherwise low-quality data is processed by an autonomous system. In this
High-quality recordings of radio frequency (RF) emissions from commercial communication hardware in realistic environments are often needed to develop and assess spectrum-sharing technologies and practices, e.g., for training and testing spectrum sensing
Ira Monarch, Jacob Collard, Sangjin Shin, Eswaran Subrahmanian, Talapady N. Bhat, Ram D. Sriram
This report describes the adaptation, composition and use of natural language processing, machine learning and other computational tools to help make implicit informational structures in very large technical corpora explicit. The tools applied to the
When people try to understand nuanced language they typically process multiple input sensor modalities to complete this cognitive task. It turns out the human brain has even a specialized neuron formation, called sagittal stratum, to help us understand
Marcin Kociolek, Michal Kozlowski, Antonio Cardone
The perceived texture directionality is an important, not fully explored image characteristic. In many applications texture directionality detection is of fundamental importance. Several approaches have been proposed, such as the fast Fourier-based method
Graph neural networks (GNN) have been shown to provide substantial performance improvements for atomistic material representation and modeling compared with descriptor-based machine learning models. While most existing GNN models for atomistic predictions
Junyun Zhao, Siyuan Huang, Osama Yousuf, Yutong Gao, Brian Hoskins, Gina Adam
While promising for high capacity machine learning accelerators, memristor devices have non-idealities that prevent software-equivalent accuracies when used for online training. This work uses a combination of Mini-Batch Gradient Descent (MBGD) to average
Kevontrez Jones, Zhuo Yang, Ho Yeung, Paul Witherell, Yan Lu
Laser powder-bed fusion is an additive manufacturing (AM) process that offers exciting advantages for the fabrication of metallic parts compared to traditional techniques, such as the ability to create complex geometries with less material waste. However
Brian Weber, Sandesh Kalantre, Thomas McJunkin, Jacob Taylor, Justyna Zwolak
The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases. For the case of identifying convex shapes of different geometries, a new classification framework has recently been proposed
Haiying Guan, Yooyoung Lee, Lukas Diduch, Jesse Zhang, Ilia Ghorbanian Bajgiran, Timothee Kheyrkhah, Peter Fontana, Jonathan G. Fiscus
This document describes the online leaderboard public evaluation program, Open Media Forensics Challenge (OpenMFC) 2021-2022. In the report, first, the introduction, objectives, challenges, contributions, and achievements of the evaluation program are
The goal of the Embedded Intelligence in Buildings program at the National Institute of Standards and Technology (NIST) is to develop and deploy advances in measurement science that will improve building operations to achieve lower operating costs
In 2020, the National Institute of Standards and Technology (NIST), in cooperation with the Intelligence Advanced Research Project Activity (IARPA), conducted an open challenge on automatic speech recognition (ASR) technology for low-resource languages on
This document provides a brief description of the National Institute of Standards and Technology (NIST) speaker recognition evaluation (SRE) conversational telephone speech (CTS) Superset. The CTS Superset has been created in an attempt to provide the
Mathieu Riou, Jacob Torrejon, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Nathan Leroux, Danijela Markovic, Vincent Cros, K. Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles, Julie Grollier
Present artificial intelligence algorithms require extensive computations to emulate the behavior of large neural networks, operating current computers near their limits, which leads to high energy costs. A possible solution to this problem is the
Sarala Padi, Omid Sadjadi, Ram D. Sriram, Dinesh Manocha
Automatic speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction. One of the main challenges in SER is data scarcity, i.e., insufficient amounts of carefully labeled data to build and fully
Hyunseop Park, Hyunwoong Ko, Yung-Tsun Lee, Shaw C. Feng, Paul Witherell, Hyunbo Cho
Additive Manufacturing (AM) is becoming data-intensive. The ability to identify Data Analytics (DA) opportunities for effective use of AM data becomes a critical factor in the success of AM. To successfully identify high-potential DA opportunities in AM
Bradley Moore, John Matyjas, Raymond Tierney, Jesse Angle, Jeannine Abiva, Jeff Hanes, David Dobosh, John Avera
NIST Handbook 150-872 presents the technical requirements and guidance for the accreditation of laboratories under the National Voluntary Laboratory Accreditation Program (NVLAP) Federal Warfare System(s) (FWS) program. It is intended for information and
Physicians are increasingly using clinical sequencing tests to establish diagnoses of patients who might have genetic disorders, which means that accuracy of sequencing and interpretation are important elements in ensuring the benefits of genetic testing
Omid Sadjadi, Craig Greenberg, Elliot Singer, Lisa Mason, Douglas Reynolds
The 2021 Speaker Recognition Evaluation (SRE21) is the next in an ongoing series of speaker recognition evaluations conducted by the US National Institute of Standards and Technology (NIST) since 1996. The objectives of the evaluation series are (1) to