Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 526 - 550 of 1240

Correlated Spin Canting in Ordered Core-Shell Fe 3 O 4 /Mn x Fe 3-x Od4^ Nanoparticle Assemblies

March 18, 2019
Author(s)
Y. Ijiri, Kathryn L. Krycka, I. Hunt-Isaak, H. Pan, J. Hsieh, Julie Borchers, James Jennings Rhyne, Samuel D. Oberdick, A. Abdelgawad, S. A. Majetich
Polarization-analyzed small-angle neutron scattering methods are used to determine the spin arrangements in ordered three-dimensional assemblies of 7.4 nm diameter core-shell Fe 3O 4/Mn xFe 3-xO 4 nanoparticles. In moderate to high magnetic fields, the

Spinon Confinement and a Sharp Longitudinal Mode in Yb 2 Pt 2 Pb in Magnetic Fields

March 8, 2019
Author(s)
W. J. Gannon, I. A. Zaliznyak, L. S. Wu, A. E. Feiguin, A. M. Tsvelik, F. Demmel, Yiming Qiu, John R. Copley, M. S. Kim, M. C. Aronson
The fundamental excitation of spin chain systems is the spinon, which is a deconfined quasiparticle with fractionalized spin. Coupling spin chains leads to the confinement of these spinons, a condensed matter analog of quark confinement in quantum

Exploring Interfacial Exchange Coupling and Sublattice Effect in Heavy Metal/Ferrimagnetic Insulator Heterostructures using Hall Measurements, X-Ray Magnetic Circular Dichroism, and Neutron Reflectometry

March 4, 2019
Author(s)
Qiming Shao, Alexander Grutter, Yawen Liu, Guoqiang Yu, Chao-Yao Yang, Dustin A. Gilbert, Elke Arenholz, Padraic Shafer, Xiaoyu Chi, Chi Tang, Mohammed Aldosary, Aryan Navabi, Qing Lin He, Brian Kirby, Jing Shi, Kang L. Wang
Ferrimagnetic insulators (FMIs), such as rare-earth iron garnets, are of considerable interest for low-power spintronics due to low Gilbert damping and the absence of free charge carriers. FMIs are also promising candidate materials for high-frequency

Evidence for moire excitons in van der Waals heterostructures

February 25, 2019
Author(s)
Kha Tran, Galan Moody, Travis M. Autry, Kevin L. Silverman, Fengcheng Wu, Junho Choi, Akshay Singh, Jacob Embley, Andre Zepeda, Marshall Cambel, Kyoung Kim, Amritesh Rai, Daniel Sanchez, Takashi Taniguchi, Kenji Watanabe, Li Yang, Nanshu Lu, Sanjay Banerjee, emanuel tutuc, Allan H. MacDonald, Xiaoqin Li
Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit. In van der Waals heterostructures formed by stacking two

Low-Carrier Density and Fragile Magnetism in a Kondo Lattice System

February 12, 2019
Author(s)
Binod K. Rai, Iain W. H. Oswald, Wenjing Ban, C.-L. Huang, V. Loganathan, A. M. Hallas, M. N. Wilson, G. M. Luke, Leland Harriger, Qingzhen Huang, Y. Li, Sami Dzsaber, Julia Y. Chan, N. L. Wang, Silke Paschen, Jeffrey W. Lynn, Andriy H. Nevidomskyy, Pengcheng Dai, Q. Si, E. Morosan
Known low carrier Kondo systems evolve from metallic non-magnetic analogues, while a recent theoretical model for the dilute carrier Kondo limit predicts semimetallic behavior. Very few 4f low carrier Kondo systems have been reported, mostly based on Ce

Stacked Josephson Junctions as inductors for SFQ circuits

February 11, 2019
Author(s)
Manuel C. Castellanos Beltran, David I. Olaya, Adam J. Sirois, Paul D. Dresselhaus, Samuel P. Benz, Peter F. Hopkins
In order for Single Flux Quantum (SFQ) circuits to be scaled to densities needed for large-scale integration, typical lithographically-patterned circuit components should be made to be as compact as possible. In this work, we characterize the performance

In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells

February 10, 2019
Author(s)
Lee J. Richter, Ahmad R. Kirmani, Furui Tan, Hairen Tan, Wei Mingyang, Makhsud I. Saidaminov, Mengxia Liu, Mei Anyi, Peicheng Li, Chih-Shan Tan, Xiwen Gong, Yongbiao Zhao, Ziru Huang, James Z. Fan, Rafael Quintero-Bermudez, Kim Junghwan, Yicheng Zhao, Oleksandr Voznyy, Zheng-Hong Lu, Weifeng Zhang, Edward H. Sargent, Bowen Zhang, Yueye Gao, Feng Zhang
Organic–inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite

High Temperature Singlet-Based Magnetism from Hund's Rule Correlations

February 7, 2019
Author(s)
Lin Miao, Rourav Basak, Sheng NMN Ran, Yishuai Xu, Erica Kotta, Haowei He, Jonathan D. Denlinger, Yi-De Chuang, Yang Zhao, Zhijun Xu, Jeffrey W. Lynn, J. R. Jeffries, Shanta Ranjan Saha, Ioannis Giannakis, Pegor Aynajian, Chang-Jong Kang, Yilin Wang, Gabriel Kotliar, Nicholas Butch, L. Andrew Wray
Novel electronic phenomena frequently form in heavy fermions as a consequence of the mutual nature of localization and itineracy of f-electrons. On the magnetically ordered side of the heavy fermion phase diagram, f-moments are expected to be localized and

Mechanosensitive ion permeation across sub-nanoporous MoS2 monolayers

January 23, 2019
Author(s)
Alta Y. Fang, Kenneth Kroenlein, Alexander Smolyanitsky
We use all-atom molecular dynamics simulations informed by density functional theory calculations to investigate aqueous ion transport across subnanoporous monolayer molybdenum disulfide (MoS2) membranes subject to varying tensile strains. Driven by a

Spin Correlations of Quantum Spin Liquid and Quadrupole-Ordered States of Tb 2+x Ti 2-x O 7+y

January 7, 2019
Author(s)
Hiroaki Kadowaki, Mika Wakita, Bjorn Fak, Jacques Ollivier, Seiko Ohira-Kawamura, Kenji Nakajima, Jeffrey W. Lynn
Spin correlations of the frustrated pyrochlore oxide Tb 2+xTi 2-xO 7+y have been investigated by using inelastic neutron scattering on single crystalline samples (x = -0.007, 0.000, and 0.003), which have the putative quantum-spin-liquid (QSL) or electric

Electrical Detection of Singlet Fission in Single Crystal Tetracene Transistors

January 4, 2019
Author(s)
Hyuk-Jae Jang, Emily Bittle, Qin Zhang, Adam Biacchi, Curt A. Richter, David J. Gundlach
Here, we present the electrical detection of singlet fission in tetracene by using a field- effect transistor (FET). Singlet fission is a photo-induced spin-dependent process yielding two triplet excitons from the absorption of a single photon. , In this

Continuum of Quantum Fluctuations in a Three-Dimensional S = 1 Heisenberg Magnet

January 1, 2019
Author(s)
K. W. Plumb, Hitesh J. Changlani, A. Scheie, Shu Zhang, J. W. Krizan, Jose Rodriguez Rivera, Yiming Qiu, B. Winn, R. J. Cava, Collin L. Broholm
Spin liquids are a fundamentally new phase of matter that cannot be described by a broken symmetry and have no order parameter. While the quantum entanglement that characterizes a quantum spin liquid is not directly accessible to any current measurement

Hidden Hyperuniformity in Bottlebrush Polymer Melts

December 21, 2018
Author(s)
Alexandros Chremos, Jack F. Douglas
We show that the backbone chains of bottlebrush polymer melts exhibit a hidden hyperuniform packing over a wide temperature range above glass transition temperature. These findings open a venue for a practical design of hyperuniform polymeric materials for

Phonon Localization in Heat Conduction

December 21, 2018
Author(s)
M. N. Luckyanova, J. Mendoza, H. Lu, B. Song, S. Huang, J. Zhou, M. Li., Y. Dong, H. Zhou, J. Garlow, L. Wu, Brian Kirby, Alexander Grutter, Alex A. Puretzky, Y. Zhu, M. S. Dresselhaus, A. Gossard, G. Chen
We report localization-like behavior in phonon heat conduction observed both in measurement of the thermal conductivities of GaAs/AlAs superlattice (SL) thin films with interfacial disorder caused by ErAs nanodots randomly distributed at the interfaces

Spin Waves Across Three-Dimensional, Close-Packed Nanoparticles

December 21, 2018
Author(s)
Kathryn Krycka, James Jennings Rhyne, Samuel D Oberdick, Ahmed M. Abdelgawad, Julie A. Borchers, Yumi Ijiri, Sara A. Majetich, Jeffrey W. Lynn
Inelastic neutron scattering is utilized to measure the spin waves, or magnons, which arise from inter-particle coupling between 8.4 nm ferrite nanoparticles that are self-assembled into a close-packed lattice, yet physically separated by oleic acid
Was this page helpful?