An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Tiara A. Maula, Harold Hatch, Vincent K. Shen, Rangarajan Srinivas, Jeetain Mittal
Molecular building blocks which self-assemble into large ordered porous networks have been long sought-after, and have led to the development of metal organic frameworks and covalent organic frameworks. However, despite the great potential possessed by
M. L. De Leoz, Yamil Simon, Robert J. Woods, Stephen E. Stein
Reference spectral library searching, while widely used to identify compounds in other areas of mass spectrometry, is not commonly used in glycomics. Building on a study by Cotter and coworkers on analysis of sialylated oligosaccharides using atmospheric
Eugene Paulechka, Dzmitry V. Shakhno, Aleh V. Shakhno
Determination of the shortest distances between particles is one of the most time-consuming parts of molecular simulation. In this work, we demonstrate that the use of signed-integer storage of coordinates in a scaled box allows one to skip multiple
Edward Maginn, Richard A. Messerly, Daniel Carlson, Daniel Roe, J. R. Elliott
The ability to predict transport properties (i.e. diffusivity, viscosity, conductivity) is one of the primary benefits of molecular simulation. Although most studies focus on the accuracy of the simulation output compared to experimental data, such a
Mark Anders, Patrick M. Lenahan, Arthur H. Edwards, Peter A. Schultz, Renee M. Van Ginhoven
The performance of SiC-based metal-oxide-semiconductor field-effect transistors (MOSFETs) is greatly enhanced by a post oxidation anneal in NO. These anneals greatly improve effective channel mobilities and substantially decrease interface trap densities
Sugata Chowdhury, Nacole B. King, Winnie K. Wong-Ng
Rutile TiO2 have been investigated using first-principle density functional theory (DFT). The equilibrium lattice parameters, electronic and optical properties of rutile TiO2 have been evaluated. Calculations were performed using the generalized gradient
Vojtech Stejfa, Ala Bazyleva, Michal Fulem, Jan Rohlicek, Eliska Skorepova, Kvetoslav Ruzicka, Andrey V. Blokhin
The thermodynamic properties, phase behavior, and kinetics of polymorph transformations of racemic (DL-) and enantiopure (L-) menthol were studied using a combination of advanced experimental techniques, including static vapor pressure measurements
Gennady J. Kabo, Andrey V. Blokhin, Eugene Paulechka, Gennady N. Roganov, Michael D. Frenkel, Iosif A. Yursha, Vladimir Diky, Dzmitry H. Zaitsau, Ala Bazyleva, Vladimir V. Simirsky, Larisa Karpushenkava, Viktor M. Sevruk
In this review, results of the studies of thermodynamic properties of organic substances conducted at the Chemistry Department of the Belarusian State University (Minsk, Belarus) over a period of more than 50 years are summarized. Emphasis is made on
Efficient estimation of the enthalpies of formation for closed-shell organic compounds \emph{via} atom-equivalent-type computational schemes and with the use of different local coupled-cluster with single, double, and perturbative triple excitations (CCSD
Marco A. Blanco Medina, Harold W. Hatch, Joseph E. Curtis, Vincent K. Shen
The theoretical framework to evaluate small-angle scattering (SAS) profiles for multi-component macromolecular solutions is re-examined from the standpoint of molecular simulations in the grand-canonical ensemble, where the chemical potentials of all
Vivek M. Prabhu, Marat Andreev, Jian Qin, Matthew Tirrell, Juan J. de Pablo, Jack F. Douglas
Polyelectrolyte coacervation refers to the formation of distinct liquid phases that arise when polyelectrolytes of opposite charge are mixed under appropriate polymer and salt concentrations. Molecular-level studies of complex polyelectrolyte coacervation