Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.




Paul Witherell, Vadim Shapiro, Yaqi Zhang


Powder bed fusion (PBF) has become a widely used additive manufacturing (AM) technology to produce metallic parts. As the PBF process is driven by a moving heat source, consistency in part production, particularly when varying geometries, has proven difficult. Thermal field evolution during the manufacturing process determines both geometric and mechanical properties of the fabricated components. Simulations of the thermal field evolution can provide insight into desired process parameter selection for a given material and geometry. Thermal simulation of the PBF process is computationally challenging due to the geometric complexity of the manufacturing process and inherent computational complexity that requires a numerical solution at every time increment of the process. We propose a new thermal simulation of the PBF process based on laser scan path. Our approach is unique in that it does not restrict itself to simulations on the part design geometry, but instead simulates the formation of the geometry based on the process plan of a part. The implication of this distinction is that the simulations are in tune with the as-manufactured geometry, meaning that calculations are more aligned with the process than the design, and thus could be argued is a more realistic abstraction of real-world behavior. The discretization is based on laser scan path and the thermal model is formulated directly in terms of the manufacturing primitives. An element growth mechanism is introduced to simulate the evolution of a melt pool during the manufacturing process. A spatial data structure, called contact graph, is used to represent the discretized domain and capture all thermal interactions during the simulation. The simulation is localized through exploiting spatial and temporal locality, based on known empirical data, which limits the need to update to at most a constant number of elements at each time step. This implies that the proposed simulation not only scales to handle three-di
Proceedings Title
International Design Engineering Technical Conferences & Computers and Information in Engineering
Conference Dates
August 16-19, 2020
Conference Location
St Louis, MO, US
Conference Title


additive manufacturing, melt pool simulation, path planning


Witherell, P. , Shapiro, V. and Zhang, Y. (2020), SCALABLE THERMAL SIMULATION OF POWDER BED FUSION, International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, St Louis, MO, US (Accessed March 4, 2024)
Created October 1, 2020, Updated January 5, 2023