NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Rotational Dynamics of Organic Cations in the CH3NH3Pbl3 Perovskite
Published
Author(s)
Tianran Chen, Benjamin J. Foley, Bahar NMN Ipek, Madhu Sudan Tyagi, John R. Copley, Craig Brown, Joshua J. Choi, Seunghun Lee Lee
Abstract
All semiconductors can generate free charges by absorbing light. However, not all semiconductors are high performance photovoltaic materials, because the charge carriers with opposite signs, electrons and holes, quickly annihilate each other. High photovoltaic effects arise when the charge recombination is slow and the charge carriers have high mobility. Methylammonium lead iodide (CH3NH3PBI3) exhibits these favorable properties. Here, using neutron scattering techniques and group theoretical analysis, we identify a rotational mode of the CH3NH3+ cation with a characteristic relaxation of 5 ps at room temperature that is intimately linked to the photovoltaic effects. Temperature dependence of the relaxation rate indicates that the four-fold rotation of the C-N axis and the associated dipole plays a central role in controlling the dielectric constant, exciton binding energy and charge recombination rate that ultimately determine the solar cell performance.
Quasielastic neutron scattering, perovskites, solar cell
Citation
Chen, T.
, Foley, B.
, Ipek, B.
, Tyagi, M.
, Copley, J.
, Brown, C.
, Choi, J.
and Lee, S.
(2015),
Rotational Dynamics of Organic Cations in the CH<sub>3</sub>NH<sub>3</sub>Pbl<sub>3</sub> Perovskite, Physical Chemistry Chemical Physics, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=918755
(Accessed October 30, 2025)