Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The Role of Hydrogen Bonding in Transition-State Stabilization by Uracil-DNA Glycosylase



A C. Drohat


An important question regarding the mechanism of N-glycosidic bond cleavage by pyrimidine-specific DNA glycosylases is how the enzyme activates the pyrimidine leaving group for expulsion. Recent studies in our lab indicate that Escherichia coliuracil DNA glycosylase (UDG) provides a hydrogen bond from a neutral His187 to stabilize the developing negative charge on uracil O2 in the transition state by 20 kJ/mol (Drohat, A.C. et al. Biochemistry 1999, 38, 11876-86). We show here thaturacil bound to the product complex at neutral pH is in the N1-O2 imidate form and has an N1 pKa = 6.4 0.1. This pKa is a surprising 3.4 units lower than for free uracil, corresponding to 20 kJ/mol of stabilization energy by the enzyme. Thus, thenegative charge that develops on the uracil base during glycosidic bond cleavage resonates to O2 and not O4. This is consistent with the observation of a highly deshielded 1H NMR resonance (d = 15.6 ppm) that is assigned to a hydrogenbond from His187-Ne 2 to uracil O2. The D/H fractionation factor (f = 1.0 0.1), solvent exchange rate and protection factor (kex = 7 s-1 and P.F. = 500), and change in 15N chemical shift upon hydrogen bond formation (D d = 10 ppm) indicatethat this is a fairly strong, short hydrogen bond. These findings suggest a general mechanism for activation of pyrimidine leaving groups by DNA glycosylases involving a preorganized active site that has been highly evolved to solvate thedeveloping negative charge in a concerted transition state as nucleophilic attack at C1 proceeds.
Proceedings Title
Sigma Xi Post Doctoral Poster Presentations, 2000
Conference Dates
February 17-18, 2000


DNA, hydrogen bonding, uracil-DNA glycosylase


Drohat, A. (2000), The Role of Hydrogen Bonding in Transition-State Stabilization by Uracil-DNA Glycosylase, Sigma Xi Post Doctoral Poster Presentations, 2000 (Accessed February 29, 2024)
Created February 1, 2000, Updated February 17, 2017