NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities
Published
Author(s)
Debjani Roy, Debra Audus, Kalman D. Migler
Abstract
A longstanding goal in polymer rheology is to develop a physical picture that relates the growth of mechanical moduli during polymer crystallization to that of structure. Here we utilize simultaneous mechanical rheology and optical microscopy, with augmentation by deterministic reconstruction and stochastic simulations, to study isothermal crystallization in isotactic polypropylene (iPP). We observe the nucleation and growth of surface and bulk spherulites which are initially isolated and then impinge to form clusters and superstructures that eventually span the gap. We find that spherulitic superstructures play a critical role in the rheology, especially in the characteristic sharp upturn in moduli. Both the rheology and the spherulitic superstructures show pronounced gap dependencies, which we explain via finite- size effects in percolation phenomena and via surface-induced nucleation. The modulus- crystallinity relationship can be described through general effective medium theory. It indicates that for thicker gaps, the visco-elastic liquid to solid transition can be described via percolation whereas for our thinnest gap, it is best described by the linear mixing rule. We describe our results in terms of dimensionless nucleation rates and spherulite size, which enables estimation of when gap-dependent superstructure effects can be anticipated.
Roy, D.
, Audus, D.
and Migler, K.
(2019),
Rheology of crystallizing polymers: The role of spherulitic superstructures, gap height, and nucleation densities, Journal of Rheology, [online], https://doi.org/10.1122/1.5111358, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927436
(Accessed October 17, 2025)