NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Reduced Nonlinearities and Improved Temperature Measurements for the NIST Johnson Noise Thermometer
Published
Author(s)
Jifeng Qu, Samuel Benz, Horst Rogalla, David R. White
Abstract
The variance of temperature measurements made with the NIST Johnson noise thermometer has been reduced by use of improved cross-correlation electronics and a unique method for measuring and reducing nonlinearities. The spectral response of the voltage noise and the reproducibility of the measured temperature were improved by use of a lower-noise preamplifier with better common-mode rejection and by removal of a systematic aliasing error through additional filtering. Even with these improvements, however, measurements with precision multi-tone comb and two-tone waveforms, which were synthesized with the quantum voltage noise source, showed that distortion generated by nonlinearities in the electronics still limited the measurement standard deviation to (3-5) uK/K greater than that expected for uncorrelated white noise. The new electronics and the measurement techniques used to characterize the nonlinearities are described. Synthesized waveforms that have higher tone density are shown to reduce the distortion generated by the remaining nonlinearities so that the variance of the measurement is no longer limited and continues to decrease with measurement time as expected.
Qu, J.
, Benz, S.
, Rogalla, H.
and White, D.
(2009),
Reduced Nonlinearities and Improved Temperature Measurements for the NIST Johnson Noise Thermometer, Metrologia, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=902592
(Accessed October 10, 2025)