Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Reaction of NO2 with Zn and ZnO: Photoemission, XANES and Density Functional Studies of the Formation of NO3

Published

Author(s)

J A. Rodriguez, T Jirsak, J Dvorak, S Sambasivan, Daniel A. Fischer

Abstract

Synchrotron-based high-resolution photoemission and x-ray absorption near-edge spectroscopy (XANES) have been used to study the interaction of NO2 with polycrystalline surfaces of metallic zinc and zinc oxide. NO2 exhibits a complex chemistry on metallic zinc. After adsorbing nitrogen dioxide, N, O, NO, NO2 and NO3 are present on the surface of the metal. At room temperature the NO2 molecule mainly dissociates into O adatoms and gaseous NO, whereas at low temperatures (<250 K) chemisorbed NO2 and NO3 dominate on the surface. NO2 is a very good oxidant agent for preparing ZnO from metallic zinc. Zn reacts more vigorously with NO2 than metals like Rh, Pd or Pt which are typical DeNOx catalysts. At 300 K, the main product of the reaction of NO2 with polycrystalline ZnO is adsorbed NO3 with little NO2 or NO present on the surface of the oxide. No evidence was found for the full decomposition of the NO2 molecule (i.e. no NO2 > N + 20). The results of density functional (DF-GGA) calculations for the absorption of NO2 on a six-layer slab of ZnO, or INDO/S calculations for NO2 on a Zn37O37 cluster, show stronger chemisorption bonds on (0001) Zn-terminated terraces than on (000) O-terminated terraces. The Zn< >NO2 interactions on ZnO are strong and the Zn sites probably get oxidized and nitrated as a result of them. It appears that NO2 is very efficient for fully oxidizing metal centers that are missing O neighbors in oxide surfaces. On zinc oxide, the nitrate species are stable up to temperatures near 700 K. ZnO can be useful as a sorbent in DeNOx operations.
Citation
Journal of Physical Chemistry
Volume
104 No. 2

Keywords

intermediates, oxidation, photoemission, soft x-ray, surface science, zinc, zoncoxide

Citation

Rodriguez, J. , Jirsak, T. , Dvorak, J. , Sambasivan, S. and Fischer, D. (2000), Reaction of NO<sub>2</sub> with Zn and ZnO: Photoemission, XANES and Density Functional Studies of the Formation of NO<sub>3</sub>, Journal of Physical Chemistry (Accessed May 20, 2024)

Issues

If you have any questions about this publication or are having problems accessing it, please contact reflib@nist.gov.

Created December 31, 1999, Updated October 12, 2021