Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Rapid Formation of Soft Hydrophilic Silicone Elastomer Surfaces

Published

Author(s)

K Efimenko, J A. Crowe, E Manias, D W. Schwark, Daniel A. Fischer, Jan Genzer

Abstract

We report on the rapid formation of hydrophilic silicone elastomer surfaces by ultraviolet/zone (UVO) irradiation of poly(vinylmethyl siloxane) (PVMS) network films. Our results reveal that the PVMS network surfaces render hydrophilic upon only a short UVO exposure time (seconds to a few minutes). We also provide evidence that the brief UVO irradiation treatment does not cause dramatic changes in the surface modulus of the PVMS network. We compare the rate of formation of hydrophilic silicone elastomer surfaces made of PVMS to those of model poly(dimethyl siloxane) (PDMS) and commerical-grade PDMS (Sylgard-184). We find that relative to PVMS, 20 times longer UVO treatment times are needed to oxidize the PDMS network surfaces in order to achieve a comparable density of surface-bound hydrophilic moieties. The longer UVO treatment times for PDMS are in turn responsible for the dramatic increase in surface modulus of UVO treated PDMS, relative to PVMS. We also study the formation of self-assembled monolayers (SAMS) made of semifluorinated organosilane precursors on the PVMS-UVO and PDMS-UVO network surfaces. By tuning the UVO treatment times and by utilizing mono- and tri-functional organosilanes we find that while mono-funtionalized organosilanes attach directly to the substrate, SAMs of tri-functionalized organosilanes form in-plane networks on the underlying UVO-modified silicone elastomer surface, even with only short UVO exposure times.
Citation
Langmuir
Volume
46

Keywords

elastomer, NEXAFS, silicone

Citation

Efimenko, K. , Crowe, J. , Manias, E. , Schwark, D. , Fischer, D. and Genzer, J. (2005), Rapid Formation of Soft Hydrophilic Silicone Elastomer Surfaces, Langmuir (Accessed April 25, 2024)
Created June 15, 2005, Updated October 12, 2021