Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy

Published

Author(s)

Amber D. McCreary, Jeffrey R. Simpson, Thuc T. Mai, Robert D. McMichael, Jason E. Douglas, Nicholas P. Butch, Cindi L. Dennis, Rolando Valdes Aguilar, Angela R. Hight Walker

Abstract

Recently it was discovered that van der Waals-bonded magnets retain long range magnetic ordering even down to a monolayer thickness, opening many avenues in fundamental physics and potential applications of these fascinating materials. One example is FePS3, a high spin (S=2) Mott insulator shown to be a quasi-2D-Ising antiferromagnet in bulk, where new features in the Raman spectra emerge below the Neel temperature of approximately 120 K. Through magneto-Raman spectroscopy, we will show that one of these Raman-active modes in the magnetically ordered state previously referred to as a phonon is instead a magnon with a high frequency of 3.6 THz (121 cm-1). We observe the expected temperature dependence and splitting of the magnon under applied magnetic fields, determining the g-factor to be ≈2. In addition, the symmetry behavior of the magnon, which is not antisymmetric, is studied and explained using the magnetic point group of FePS3.
Citation
Physical Review B
Volume
101
Issue
6

Keywords

Magnon, spin-wave, Raman spectroscopy, magneto-Raman, phonon, 2D materials, FePS3, Mott insulator
Created February 18, 2020, Updated April 7, 2020