Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Quantum dot–quantum dot interactions mediated by a metal nanoparticle: Towards a fully quantum model

Published

Author(s)

Ryan Artuso, Garnett W. Bryant

Abstract

We study the interactions between two semiconductor quantum dots (SQDs) coupled to a metal nanoparticle (MNP) using different approximations. In particular, we identify and address issues in modeling the system using a semiclassical approach. We find that a semiclassical approach to model the coupling between the SQDs can lead to unstable, oscillatory and chaotic behavior in a strong SQD-SQD coupling regime. This non-linear behavior is shown to be due to a breaking of the identical particle symmetry. Additionally, we see that this chaotic behavior is closely related to the type of decoherence present in the system, specifically, whether the decoherence is collective or non- collective between the two SQDs. This provides insight into proper accounting of these important, but often neglected interactions. When the system is modeled using a more quantum mechanical approach, this chaotic regime is absent. Finally, we compare the two models on a system with a strong plasmon mediated interaction between the SQDs and a weak direct interaction between them. In this case, we find that while the results of the two models are similar, dipole blockade and the level splitting of the single exciton states in the quantum model give rise to non-trivial differences between the two models.
Citation
Physical Review B
Volume
87
Issue
12

Keywords

Quantum Dot, Metal Nanoparticle, Hybrid Nanostructures, Quantum Optics
Created March 21, 2013, Updated September 20, 2019