NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A quantum computer, if built, will be to an ordinary computer as a hydrogen bomb is to gunpowder, at least for some types of computations. Today no quantum computer exists, beyond laboratory prototypes capable of solving only tiny problems, and many practical problems remain to be solved. Yet the theory of quantum computing has advanced significantly in the past decade, and is becoming a significant discipline in itself. This article explains the concepts and basic mathematics behind quantum computers and some of the promising approaches for building them. We also discuss quantum communication, an essential component of future quantum information processing, and quantum cryptography, widely expected to be the first practical application for quantum information technology.
Black, P.
, Kuhn, D.
and Williams, C.
(2002),
Quantum Computing and Communication, Advances in Computers, Academic Press, San Diego, CA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51022
(Accessed October 1, 2025)