An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Quantitative Comparison of Atomistic Simulations with Experiment for a Cross-Linked Epoxy: A Specific Volume Cooling-Rate Analysis Epoxy
Published
Author(s)
Ketan S. Khare, Frederick R. Phelan Jr.
Abstract
Cross-linked epoxy thermosets, like all glass-forming viscoelastic materials, show both a temperature and rate dependence in their thermo-mechanical properties. However, accounting for rate effects on these properties using molecular dynamics (MD) simulations and making quantitative comparison with experimental measurements has proven to be a difficult task due to the extreme mismatch between experimental and computationally accessible cooling-rates. For this reason, the effect of cooling-rate on material properties in glass forming systems (including epoxy networks) has been mostly ignored in computational studies, making quantitative comparison with experimental data nebulous. In this work, we investigate a strategy for modeling rate effects in an epoxy network based on an approach that uses theoretically informed simulation and analysis protocols in combination with material specific time-temperature superposition (TTSP) data obtained from experimental measurements. To illustrate and test the strategy, we build and study an atomistic model of a cross-linked epoxy network. Molecular dynamics simulations are used to model the specific volume as a function of temperature across the glass transition from the rubbery to the glassy state using a total of five computationally accessible cooling-rates. From the trends thus identified, we pinpoint the temperatures at which the models show rubbery and glassy behavior and use this information to calculate the values of the glass transition temperature (Tg) for each of the different cooling-rates. Comparison with experimental data obtained from the literature (for the identical epoxy network) shows that our computations successfully predict the trends in specific volume in the rubbery and the glassy regions within 0.5%. We then compare the Tg values obtained from the data analysis with those calculated using the TTSP data obtained from the literature. Excellent agreement is found. (continued in manuscript)
Khare, K.
and Phelan, F.
(2018),
Quantitative Comparison of Atomistic Simulations with Experiment for a Cross-Linked Epoxy: A Specific Volume – Cooling-Rate Analysis Epoxy, Macromolecules, [online], https://doi.org/10.1021/acs.macromol.7b01303
(Accessed October 8, 2024)