Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Quantitative Comparison of Atomistic Simulations with Experiment for a Cross-Linked Epoxy: A Specific Volume – Cooling-Rate Analysis Epoxy



Ketan S. Khare, Frederick R. Phelan Jr.


Cross-linked epoxy thermosets, like all glass-forming viscoelastic materials, show both a temperature and rate dependence in their thermo-mechanical properties. However, accounting for rate effects on these properties using molecular dynamics (MD) simulations and making quantitative comparison with experimental measurements has proven to be a difficult task due to the extreme mismatch between experimental and computationally accessible cooling-rates. For this reason, the effect of cooling-rate on material properties in glass forming systems (including epoxy networks) has been mostly ignored in computational studies, making quantitative comparison with experimental data nebulous. In this work, we investigate a strategy for modeling rate effects in an epoxy network based on an approach that uses theoretically informed simulation and analysis protocols in combination with material specific time-temperature superposition (TTSP) data obtained from experimental measurements. To illustrate and test the strategy, we build and study an atomistic model of a cross-linked epoxy network. Molecular dynamics simulations are used to model the specific volume as a function of temperature across the glass transition from the rubbery to the glassy state using a total of five computationally accessible cooling-rates. From the trends thus identified, we pinpoint the temperatures at which the models show rubbery and glassy behavior and use this information to calculate the values of the glass transition temperature (Tg) for each of the different cooling-rates. Comparison with experimental data obtained from the literature (for the identical epoxy network) shows that our computations successfully predict the trends in specific volume in the rubbery and the glassy regions within 0.5%. We then compare the Tg values obtained from the data analysis with those calculated using the TTSP data obtained from the literature. Excellent agreement is found. (continued in manuscript)


atomistic simulations, glass transition, time-temperature superposition, cross-linked epoxy, thermosets, molecular dynamics simulation, cooling-rate, WLF thermosets, molecular dynamics simulation, cooling rate, WLF
Created January 8, 2018, Updated November 10, 2018