Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quantitative Analysis and Characterization of DNA Immobilized on Gold



D Y. Petrovykh, H Y. Kimura-Suda, L J. Whitman, Michael J. Tarlov


We describe the complementary use of x-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy to quantitatively characterize the immobilization of thiolated poly(dT)25 single-stranded DNA (ssDNA) on gold. When electron attenuation effects are accurately accounted for in the XPS analysis, the relative coverage values obtained by the two methods are in excellent agreement, and the absolute coverage can be calculated based on the XPS data. The evolution of chemically-specific spectral signatures during immobilization indicates that at lower coverages much of the DNA lies flat on the surface, with a substantial fraction of the thymine bases chemisorbed. At higher immobilization densities, the poly(dT)25 film consists of randomly-coiled ssDNA molecules each anchored via the thiol group and at possibly one or two other bases. We observe strong effects of different buffer salts on the immobilization efficiency and find surprising immobilization kinetics in a standard phosphate buffer. Buffers with divalent salts dramatically increase the efficiency of immobilization and result in very high surface densities (>5 1013/cm2), densities that may only be possible if the divalent counterions induce strong attractive intermolecular interactions. In contrast with previous reports of alkanethiol adsorption kinetics on gold, ssDNA immobilization does not occur with Langmuir kinetics, a result attributable to rearrangement within the film that follows the initial adsorption.
Journal of the American Chemical Society
No. 17


alkanethiol, DNA, DNA microarrays, self-assembly


Petrovykh, D. , Kimura-Suda, H. , Whitman, L. and Tarlov, M. (2003), Quantitative Analysis and Characterization of DNA Immobilized on Gold, Journal of the American Chemical Society (Accessed February 20, 2024)
Created April 29, 2003, Updated October 12, 2021