Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Quadrupole moments and hyperfine constants of metastable states of Ca+, Sr+, Ba+, Yb+, Hg+, and Au

Published

Author(s)

Wayne M. Itano

Abstract

Atomic quadrupole moments and hyperfine constants of the metastable 2d3/2,5/2 states of Ca+, Sr+, Ba+, Yb+, and Hg+ are calculated by the multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration-interaction(RCI) methods. For Hg+, the configuration is 5d96s2. For the other ions, the configuration consists of a single d-electron outside a set of closed shells. Current interest in the quadrupole moments of these states is due to the fact that optical transitions of these ions may be useful as references for frequency standards. Energy shifts of the metastable states due to the interactions of the quadrupole moments with external electric field gradients are among the largest sources of error in these frequency standards. For the quadrupole moments, agreement is obtained to within a few percent with the available measurements. For the hyperfine constants, good agreement is obtained with measurements and with other calculations, except for the A factors of the 2d5/2 states of Sr+, Ba+, and Yb+, where correlation effects are so large that they reverse the sign of the constant, relative to the Dirac-Hartree-Fock value. As a test of the Hg+ calculational methods, quadrupole moments and hyperfine constants are calculated for the 5u96s2 2d3/2,5/2 states in isoelectronic neutral Au. This yields a new value of the nuclear quadrupole moment Q(197Au) = +0.602(30) b, in slight disagreement with the currently accepted value of +0.547(16) b.
Citation
Physical Review A (Atomic, Molecular and Optical Physics)
Volume
73

Keywords

atomic quadrupole moments, hyperfine interactions, multiconfiguration Dirac-Hartree-Fock, nuclear quadrupole moments, relativistic atomic calculations, relativistic configuration interaction
Created February 17, 2006, Updated January 27, 2020