Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Pseudomagnetic Fields in a Locally Strained Graphene Drumhead



Shuze Zhu, Yinjun Huang, Nikolai Klimov, David B. Newell, Nikolai Zhitenev, Joseph A. Stroscio, Santiago D. Solares Rivera, Teng Li


Recent experiments reveal that a scanning tunneling microscopy (STM) probe tip can generate a highly localized strain field in a graphene drumhead, which in turn leads to pseudomagnetic fields in the graphene that can spatially confine graphene charge carriers in a way similar to a lithographically defined quantum dot (QD). While these experimental findings are intriguing, their further implementation in nanoelectronic devices hinges upon the knowledge of key underpinning parameters, which still remain elusive. In this paper, we carry out systematic coarse grained simulations to offer a mechanistic interpretation of STM tip-induced straining of the graphene drumhead. Our findings reveal the effect of (i) the position of the STM probe tip relative to the graphene drumhead center, (ii) the sizes of both the STM probe tip and graphene drumhead, as well as (iii) the applied back-gate voltage, on the induced strain field and corresponding pseudomagnetic field. These results can offer quantitative guidance for future design and implementation of reversible and on-demand formation of graphene QDs in nanoelectronics.
Physical Review B


graphene, pseudomagnetic field, quantum dot, STM, scanning tunneling microscopy, scanning tunneling spectroscopy


Zhu, S. , Huang, Y. , Klimov, N. , Newell, D. , Zhitenev, N. , Stroscio, J. , Solares Rivera, S. and Li, T. (2014), Pseudomagnetic Fields in a Locally Strained Graphene Drumhead, Physical Review B, [online],, (Accessed May 25, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created August 24, 2014, Updated October 12, 2021