Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Proton Spin-Spin Relaxation of Water Molecules in a Gel Binder and Ceramic Blend

Published

Author(s)

P S. Wang

Abstract

Water molecules interactions in a agarose gel used as a ceramic binder and ceramic blends were studied by proton spin-spin relaxation. Nuclear spin echo signals of agar powder, water/agar gels, and gel/alumina blends were measured using a (π/2)-τ-π-τ-echo pulse sequence, and the nuclear spin-spin relaxation times (T2) were calculated by Bloch equations from these echo intensities. Two types of protons with distinct relaxation times were observed from the agar powder, O-H and C-H. The 1H T2 from water molecules in the gel was found to be shorter than that for pure water due to the proton spin exchange between free water and a small fraction of water interacting with polysaccharide networks. The relaxation rate was found to be directly proportional to the agarose concentration in the gels because of increasing exchange rate. When the gel was blended with an alumina powder, the free water was adsorbed by the alumina powder surfaces resulting in a significant loss of molecular mobility, indicating a bound state with an extremely short relaxation time.
Citation
Journal of Materials Science

Keywords

ceramic binder, proton relaxation, water molecules

Citation

Wang, P. (2017), Proton Spin-Spin Relaxation of Water Molecules in a Gel Binder and Ceramic Blend, Journal of Materials Science (Accessed October 14, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created February 19, 2017
Was this page helpful?