NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We propose a high-performance atomic clock based on the 1.81 PHz transition between the ground and first-excited state of doubly ionized lead. Utilizing an even isotope of lead, both clock states have $I=J=F=0$, where $I$, $J$, and $F$ are the conventional quantum numbers specifying nuclear, electronic, and total angular momentum, respectively. The clock states are nondegenerate and completely immune to nonscalar perturbations, including first order Zeeman and electric quadrupole shifts. Additionally, the proposed clock is relatively insusceptible to other frequency shifts (blackbody radiation, second order Zeeman, Doppler), accommodates ''magic'' rf trapping, and is robust against relaxation and dephasing mechanisms that can otherwise limit clock stability. By driving the transition as a two-photon $E1$+$M1$ process, the accompanying probe Stark shift is appreciable yet manageable for practical Rabi frequencies.
Beloy, K.
(2021),
Prospects of a Pb$^{2+}$ ion clock, Physical Review Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931860
(Accessed October 9, 2025)