Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Premixed flame inhibition by CF3Br and C3H2F3Br (2-BTP)

Published

Author(s)

John Pagliaro, Gregory T. Linteris, Nicolas Bouvet

Abstract

The un-stretched burning velocities and Markstein lengths of premixed CH4- and C3H8-air flames with added C3H2F3Br (2-BTP) or CF3Br (Halon 1301), have been studied experimentally and numerically. The predicted un-stretched burning velocities, using a recently updated kinetic model for CF3Br flame inhibition, were in excellent agreement with the experimental results, over a range of fuel-air equivalence ratio and CF3Br loading, illustrating the improvements in that mechanism. Using a recently reported kinetic model for C3H2F3Br flame inhibition, the un-stretched burning velocities were in good agreement with the experimental results for most of the stoichiometries tested; nonetheless, for very lean flames approaching the flammability limit, model predictions differed by up to 25 %, even for uninhibited flames. The influence of inhibitor on the flame response to stretch and susceptibility to instabilities was examined through consideration of the measured burned gas Markstein lengths. Markstein lengths were very large, leading to large stretch effects on the flame stability after ignition, and flame wrinkling during explosion tests, greatly increasing the rate of pressure rise. The influence of stretch with regard to flame inhibitor effectiveness is discussed.
Citation
Combustion and Flame

Keywords

Fire suppression, 2-BTP (C3H2F3Br), Halon 1301 (CF3Br), Burning velocity, Markstein length, refrigerant flammability.

Citation

Pagliaro, J. , Linteris, G. and Bouvet, N. (2016), Premixed flame inhibition by CF3Br and C3H2F3Br (2-BTP), Combustion and Flame, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919338 (Accessed February 28, 2024)
Created May 31, 2016, Updated October 12, 2021