Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Preliminary Performance Assessment of Commercially-Available Hydrogen Sensors

Published

Author(s)

Nathan D. Marsh, Thomas G. Cleary

Abstract

As part of an effort to develop standard test methods for the performance of commercial hydrogen sensors, we employed the Fire Emulator / Detector Evaluator, an instrumented flow system designed to study the response of fire detectors (smoke, heat, gas), in a preliminary study to evaluate the performance of a representative selection of commercially-available hydrogen sensors. These sensors depend on a variety of sensing technologies including metal-oxide semiconductors, electrochemical cells, catalytic bead pellistors, thermal conductivity sensors, and sensors employing a combination of technologies. They were evaluated both for their response to hydrogen concentrations up to half the lower flammability limit, and their response to nuisance gases (CO, CO2, NOx, hydrocarbon gas and vapor-all potentially present in hydrogen dispensing and storage areas), as well as dynamic changes in environmental conditions by varying temperature, humidity, and flow velocity. These performance evaluations provide guidance for the development of a test method designed to assess real-world performance of hydrogen gas sensors. The ultimate goal is to develop standard test methods to be employed by product certification agencies.
Proceedings Title
Materials Issues in a Hydrogen Economy International Symposium
Conference Dates
November 12-15, 2007
Conference Location
Richmond, VA

Keywords

hydrogen, sensors, test methods, fire detectors, performance evaluation, semiconductor devices, thermal conductivity, flammability limits, certification, response time, moisture, UL 2075

Citation

Marsh, N. and Cleary, T. (2007), Preliminary Performance Assessment of Commercially-Available Hydrogen Sensors, Materials Issues in a Hydrogen Economy International Symposium, Richmond, VA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912272 (Accessed April 16, 2024)
Created November 12, 2007, Updated February 19, 2017